
Derivation of Quantum Langevin Equation from an Explicit Molecule-Medium Treatment
in Interaction Picture †

Sambhu N. Datta*
Department of Chemistry, Indian Institute of TechnologysBombay, Powai, Mumbai-400076, India

ReceiVed: June 9, 2005; In Final Form: August 31, 2005

A quantum mechanical form of the Langevin equation is derived from an explicit consideration of the
molecule-medium interaction, as advocated by Simons in 1978, and by using two identities in the interaction
picture. This can be easily reduced to the classical regime, and further simplified to the macroscopic Langevin
equation by considering the stochastic Langevin force autocorrelation function. One of the so-called Einstein
relations appears as a byproduct. By following the methodology proposed by Simons, an exact expression for
the momentum autocorrelation function is obtained. The latter can be used to calculate the zero-frequency
macroscopic diffusion coefficient that is observed to satisfy the second Einstein relation. The formalism
described above gives rise to the possibility of explicitly computing the transport characteristics such as
friction constant and diffusion coefficient from the corresponding quantum statistical mechanical expressions.
A discussion on the Langevin equation becomes complete only when the corresponding Fokker-Planck
equation is obtained. Therefore, the probability of the evolution of states with a particular absolute magnitude
of linear momentum from those of another momentum eigenvalue is quantum mechanically defined. This
probability appears as a special average value of a projection operator and as a special projection operator
correlation function. A classical identity is introduced that is shown to be valid also for the quantum
mechanically defined probability function. By using this identity, the so-called Fokker-Planck equation for
the evolution probability is easily established.

1. Introduction

Approximately three decades ago, in 1976, Jack Simons pre-
pared a theoretical formalism for the treatment of molecules in
the condensed phase. The medium was considered to be in ther-
mal equilibrium.1 The theory is not appropriate for fluorescence,
as the intense radiation would heat the neighborhood of the emit-
ting molecule and disturb the thermal equilibrium in short-range.
The formalism was rightfully applied to the study of absorption
spectroscopy at low radiation density,2 and also to the investiga-
tion of a few transport properties.3 In fact, the formulation is
ideal for the investigation of transport in a thermally equilibrated
medium. Our group has investigated the transport of excitation
energy in a molecular aggregate by using the same formalism.4

Very recently, we have been able to calculate exciton trapping
rates in a thylakoid membrane, and the calculated rates are
highly representative of the known rates of plant growth.5

This work endeavors to show that the formalism proposed
by Simons leads to a lucid statistical mechanical interpretation
of transport. In particular, I would present a derivation of the
quantum mechanical form of the Langevin equation, a subse-
quent reduction to its classical counterpart, and the quantum
mechanical derivation of the Fokker-Planck equation. Most of
the relations are well-known to generations of statistical
physicists.6 What is new in this work is to establish that these
fundamental relationships are derivable from the theory in ref
1 that is exact as long as the medium is in thermal equilibrium,
and therefore, a perturbation expansion in terms of the fluctua-
tions of the medium’s phase space coordinates from their
equilibrium values is convergent and, in principle, complete.

Moreover, the derivations are mostly quantum statistical in
nature, although the transition to the classical limit is discussed
whenever it is appropriate. So, a quantum statistical background
is offered for the well-known classical and phenomenological
relations.

2. Theoretical Background

Hamiltonian. The underlying assumption here is that, when
the medium is in thermal equilibrium, the time-averaged electric
field created by the medium at the center of the solute molecule
is centrally symmetric (but not necessarily zero), and there is
no net magnetic field. Under these conditions, the center-of-
mass motion of the solute can be separated from its internal
movements (electronic, vibrational, and rotational motions), even
if the solute is a charged species.7 The separation of the center-
of-mass motion is normally assumed in statistical mechanical
treatments on an ad-hoc basis, and the above reasoning serves
to clarify the physical and quantum mechanical situation.
Therefore, the solute Hamiltonian is written as

In the above,{r} represents the coordinates of the constituents
of the solute,{r ′} represents the internal coordinates,r cm is the
coordinate of the center of mass,pcm is the corresponding linear
momentum operator, andM is the total mass of the solute. The
translational operatorhcm constitutes a slight difference from
the choice of the molecular Hamiltonian in ref 1, but it is vitally
important for an investigation of transport properties. In fact,
McHale and Simons3 included the kinetic energy term in their
treatment of diffusion of a solvated electron.

† Part of the special issue “Jack Simons Festschrift”.
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hsol({r}) ) hint({r ′}) + hcm(r cm)

hcm ) pcm
2/2M (1)
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The medium Hamiltonian is represented as a sum of total
kinetic energy and total interaction energy

where ({R}, {P}) stands for the phase space coordinates of all
molecules of the medium. The solute-medium interaction is
given by

and it obviously contains information on the internal modes of
the solute. The termu0 is negative and generally large, and it
represents the ground-state stabilization energy of the solute in
medium. The interactionu1 accounts for the variation of the
potential energy as the solute molecule moves from the location
of one cavity to the next, and also for the change of the
stabilization energy upon excitation of the molecule. Isotropy
of space such as that existing in a liquid medium requiresu1 to
be centrally symmetric and a periodic function ofr cm. Another
way of visualizing the same is that, as the solvated species
moves along any arbitrary direction, in thermal equilibrium of
the medium it achieves an equivalent configuration (that may
differ only by molecular rotation) for its associated solvent
sheath at almost regular intervals. The termδV accounts for
the rest of the molecule-medium interaction, including any
nonperiodic part. It varies completely arbitrarily. Bothu1 and
δV can be visualized as arising from the fluctuation of the
medium coordinates from their equilibrium values. The observa-
tion that u1 can be chosen as a periodic function ofrcm is
especially valid for an infinite system that has no end effect.
For instance, the Kronig-Penney model potential may be
considered for the migration of a solvated electron.3

The total molecule-medium Hamiltonian

can be partitioned as

where

and

The perturbationH′ is small in thermal equilibrium at a relatively
low temperature.

Distribution Functions. In a quantum-mechanical treatment,
one uses the distribution operators in lieu of distribution
functions. The three classes of motion considered here have the
following grand canonical distribution operators:

Here, µsol and µmed are the chemical potentials of the solute
and solvent molecules, respectively, andNsol andNmed are the
corresponding numbers. Considering that this work deals with

processes where the numbers are always conserved, the chemical
potential dependence can be removed from the distribution
operators. In other words, one may use the canonical distribution
operators. Statistical mechanical averages would be written as
〈X〉 ) Fr{F̂X}. One observes

so that〈δV〉med ) 0.
Identities. The formulation in ref 1 is based on two basic

identities in an interaction picture. The first one is

whereH′(t′) has Heisenberg time dependence with the zeroth-
order Hamiltonian

and T indicates time ordering. The time evolution of any
operator Ôis given by

The second identity is

These two identities give rise to a general expression for the
correlation functions, namely

where

Correlation Functions. A few properties of the correlation
functions are reviewed here. One may write

where ĈAB(t, t′) ) A(t)B(t′). The equality above exhibits the
so-called Heisenberg-Schrödinger duality, (rather, unity). The
distributionF̂ obeys the quantum mechanical Liouville equation.

If B commutes withH°, then the correlation function has a
very simple form

This is due to the property of a trace. Furthermore, ifB is a
constant, then the correlation function reduces to the same
constant multiple of the thermally averaged value ofA(t)

The average value〈A(t)〉 need not necessarily be independent
of time in a dynamical situation, as would be shown in the
example (iv) below and elaborated in section 5. It may also
represent a steady state of motion, as discussed by us earlier in
the context of the migration of excitation energy in a molecular

hmed({R}) ) T({P}) + U({R}) (2)

u({r ′}, rcm, {R}) )
u0 + u1({r ′}, rcm) + δV({r ′}, r cm, {R}) (3)

H ) hsol + hmed+ u (4)

H ) H0 + H′ (5)

H0 ) hint + hcm + hmed+ u0 (6)

H′ ) u1 + δV (7)

F̂int ) e-â(hint-µsolNsol)/Fr{e-â(hint-µsolNsol)}

F̂cm ) e-âhcm/Fr{e-âhcm}

F̂med) e-â(hmed-µmedNmed)/Fr{e-â(hmed-µmedNmed)} (8)

u0 + u1({r ′}, rcm) ) Fr{F̂medu({r ′}, rcm, {R})} (9)

e-iHt ) e
T

-i ∫
0

t
H′(-τ)dτ

e-iH0t (10)

H′(t′) ) eiH0t′H′(0) e-iH0t′ (11)

Ô(t) ) eiH0t e
T

i ∫
0

t
H′(-τ)dτ

Ô(0) e
T

-i ∫
0

t
H′(-τ′)dτ′

e-iH0t (12)

e
T

i ∫
0

t
H′(-τ)dτ

Ô(0) e
T

-i∫
0

t
H′(-τ′)dτ′ ) {e

T

i ∫
0

t
[H′(-τ),]dτ

Ô(0)}
(13)

CAB(t, 0) ≡ 〈A(t)B(0)〉 ) Fr{F̂ eiH0t Ah(t) e-iH0t B(0)} (14)

Ah(t) ) {e
T

i ∫
0

t
dτ[H′(-τ),]

A(0)} (15)

CAB(t, 0) ) Fr{F̂(0) ĈAB(t, 0)}

) Fr{F̂(-t)ĈAB(0, -t)} (16)

CAB(t, 0) ) Fr{F̂(0)Ah(t)B(0)} (17)

〈A(t)〉 ) Fr{F̂(0)Ah(t)}

) Fr{F̂(-t)A(0)} (18)
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aggregate.4 Therefore, it may be called a correlation function
of the second kind. It is also possible to generalize the correlation
function of the second kind by calculating the expectation value
over one type of motion (say, the excitonic mode) and the
thermal average over the other types (say, the phonon modes).
In the present context, this would be illustrated in example (iv)
by an expectation value over the center-of-mass motion, while
the thermal averaging is done over the internal movement of
the solute molecule and the movement of the molecules in the
medium. The last step in eq 18 again reveals the Heisenberg-
Schrödinger synthesis.

This work involves the treatment of four quantities, one
operator and its expectation value, two correlation functions,
and an operator and the corresponding correlation function of
the second kind. These are explicitly as follows: (i) the linear
momentum of the center of the mass,pcm(t), and its expectation
value over momentum states; (ii) the stochastic Langevin force
autocorrelation function,〈fL(t)‚fL(0)〉int,cm,med, (A ) B ) fL, F̂ )
F̂intF̂cmF̂med); (iii) the momentum autocorrelation function,〈pcm-
(t)‚pcm(0)〉int,cm,med, (A ) B ) pcm; F̂ ) F̂intF̂cmF̂med); and (iv) a
projection operator and the projection correlation function of
the second kind.

The exact stochastic force would be defined by

while the stochastic Langevin force is written as

3. To Langevin Equation

In this section, use is made of the two identities and the
Hamiltonian in eq 5. This Hamiltonian is a slightly modified
version of the Hamiltonian in ref 1.

Quantum Langevin Equation. The Langevin equation
appears in two parts. The first part is trivial to establish, asr3 cm

) i[H, r cm] ) pcm/M. The second part deals with the time
dependence ofpcm(t). Using eqs 12 and 15, one can write

where

One now considers the time derivative

where

The third-order term can be written as

The last two integrals represent the difference at the third order.
The fourth-order term can be similarly reduced, and so on.
Therefore, it is possible to write

This is the quantum mechanical version of the Langevin
equation.

It is obvious that the integrandI involved in eq 26 is of the
form O1(t - t′) pcm(t′) O2(t - t′). At this point, one makes the
assumption that, fort - t′ greater than a relaxation timetrel, the
terms of the integrand other than the momentumpcm(t′) may
be replaced by an average value. By using eq 21, the integrand
in eq 26 is written as

To get an average, one takes outpcm(t′), and the remaining
expression is weighted by the kinetic energy in such a way that
onepcm stays in the place ofpcm(t′) and the otherpcm remains
after the expression, and the overall expression is normalized.
The thermal average of the deviations at the third and higher
orders becomes zero. This gives, becausepcm commutes with
H° and the intermediate propagators exp((iH0t′) cancel each
other

It will be shown later that this substitution is in agreement with
the stochastic force correlation function. Thus, the integrand
I (t, t′) is to be replaced as

where the average valueς(t - t′) is written as

The propagators exp((iH0t) vanish after taking the trace. The
substitution by an average value is, of course, an approximation,
but it is justified on the following ground. As the solute molecule
pushes through the molecules of the medium, the latter exert a
dragging force. One part of the rate of change of this force with

fstochastic(0) ) -∇cmH′(0) ≡ -i[pcm, H′(0)]

fstochastic(t) ) -i[pcm(t), H′(t)] (19)

fL(t) ) -∇cmH′(-t) ≡ -i[pcm, H′(-t)] ) fstochastic(-t) (20)

pcm(t) ) eiH0t pjcm(t) e-iH0t (21)

pjcm(t) ) pcm + i∫0

t
[H′(-t′), pcm] dt′ + i2∫0

t
dt′∫0

t
dt′′ T[H′

(-t′), [H′(-t′′), pcm]] + i3∫0

t
dt′∫0

t
dt′′∫0

t
dt′′′ T[H′(-t′),

[H′(-t′′), [H′(-t′′′), pcm]]] + ... (22)

d
dt

pcm(t) ) i[H0, pcm(t)] + eiH0t pj3 cm(t) e-iH0t (23)

pj3 cm(t) )

fL(t) - ∫0

t
dt′{H′(-t)H′(-t′)pcm - 2H′(-t)pcmH′(-t′) +

pcmH′(-t)H′(-t′)} - i∫0

t
dt′ ∫0

t
dt′′ {H′(-t)H′(-t′)H

(-t′′)pcm - 3H′(-t)H′(-t′)pcmH(-t′′) + 3H′(-t)pcmH′
(-t′)H(-t′′) - pcmH′(-t)H′(-t′)H(-t′′)} + ... (24)

-∫0

t
dt′{H′(-t)H′(-t′)i ∫0

t′
dt′′[H′(-t′′), pcm] - 2H′(-

t)i ∫0

t′
dt′′[H′(-t′′), pcm]H′(-t′) + i ∫0

t′
dt′′[H′(-t′′), pcm]H′

(-t)H′(-t′) + 2H′(-t)i ∫0

t′
dt′′([H′(-t′′), pcm]H′(-t′) - [H′

(-t′), pcm]H′(-t′′)) - i∫0

t′
dt′′([H′(-t′′), pcm]H′(-t)H′

(-t′) - [H′(-t), pcm]H′(-t′)H′(-t′′))} (25)

d
dt

pcm(t) ) -∫0

t
dt′ eiH0t{H′(-t)H′(-t′)pjcm(t′) - 2H′(-t)pjcm

(t′)H′(-t′) + pjcm(t′)H′(-t)H′(-t′) + O(3)} e-iH0t + eiH0t fL

(t) e-iH0t + i[H0, pcm(t)] (26)

I (t, t′) ) eiH0t{H′(-t)H′(-t′) e-iH0t′pcm(t′) eiH0t′ - 2H′

(-t) e-iH0t′pcm(t′) eiH0t′ H′(-t′) + e-iH0t′pcm(t′) eiH0t′ H′(-t)H′

(-t′) + O(3)} e-iH0t (27a)

I (t, t′) z

〈eiH0t{H′(-t)H′(-t′)pcm - 2H′(-t)pcmH′(-t′) + pcmH′

(-t)H′(-t′)}‚pcm e-iH0t〉 pcm(t′)/〈eiH0t pcmpcm e-iH0t〉 (27b)

I (t, t′) z M-1ς(t - t′)pcm(t′) (27c)

ς(t - t′) ) M〈pcm
2〉-1× 〈{H′(-t)H′(-t′)pcm - 2H′

(-t)pcmH′(-t′) + pcmH′(-t)H′(-t′)}‚pcm〉int,cm,med (28)
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time varies linearly with momentum, and the proportionality
constant becomes equilibrium-averaged in the span of a very
short time trel. With this maneuver, the quantum Langevin
equation reduces to

When the quantityς(t, t′) is explicitly calculated, one finds

where i is an internal state,p represents the momentum
eigenvalue, ands is an eigenstate ofhmed.

Reduction to the Classical Regime.When an averaging is
carried out over a momentum eigenstate, one gets an integrated
version of the classical Langevin equation

The plane-wave expectation value of the stochastic Langevin
force more or less vanishes, as one part of the force periodically
varies with rcm and the other part changes arbitrarily with
position. However, if an averaging is done over a time-
independent wave packet that is localized in space and serves
as an approximate eigenstate ofH0, one gets the approximate,
but more familiar, form

The classical limit applies when the spreading of the wave
packet can be neglected over times of interest in the particular
problem. Thus, it applies to solute molecules (cation, anion, or
neutral) at ordinary temperatures, but not to the migration of a
solvated electron. A solvated electron can migrate in various
ways, namely, from cavity to cavity, from one solvent molecule
to another, and through the migration of the solvent molecule
with which it is attached.3

Stochastic Force Correlation. It is easy to note that
〈fL(0)〉int,cm,med ) 0 but 〈fL(t)〉int,cm,med * 0. Furthermore, the
autocorrelation function of the fluctuating force

is, in general, nonzero. An explicit calculation yields

In eq 30, as well as here, the involved states are practically
continuous, and most of the sums are to be read as integrals.
The conversion of summation to integration is a standard
technique, and would not be pursued here. What is important
here is that, because of the extensively oscillating factors, the
correlation function becomes sharply peaked att - t′ ) 0. With
only minor manipulations, it is possible to write

when one considers the sum over discrete states in eq 34 and
with similar manipulations

when eq 34 involves continuum states. The quantityλ is given
by

and can be evaluated if one assumes a specific form ofu1 and
δV.

It is obvious that the classical assumptions about the average
and the autocorrelation of stochastic forces8 are accurately
derivable in the quantum mechanical treatment.

Simplifications. The first question that arises at this point is
whetherς(t - t′) is related toCff(t, t′), as these are very similar
quantities. In fact, one finds from eqs 30 and 34 that they differ
only in the factors 2p‚(p - p′) and|p - p′|2 within each sum
in the numerator. It is easy to realize that the predominant
contribution to each expression arises from thep ) p′ terms.
Thus, the sums ofp2 in the numerator equal the sums ofp′2.
This establishes the quantity

In a classical or semiclassical treatment, such an equality can
be found by certain approximate considerations of the conserva-
tion of energy as discussed in ref 10. In view of eq 37, the
Langevin eq 32 can be recast as

BecauseCff(t, t′) is sharply peaked at and symmetric around
t - t′ ) 0, one can easily replace the integral in eq 32 as shown
in the following:

The macroscopic friction constantη turns out as

This result is a restatement of the fluctuation-dissipation
theorem.10 Use of eq 39 in eq 32 yields

which is the macroscopic Langevin equation. Similarly, by using
eq 35b and the fact that〈pcm

2〉cm ) 3M/â, one finds

which is the so-called Einstein relation.

4. Diffusion Coefficient

Momentum Autocorrelation. The momentum autocorrela-
tion function can be directly written down from eq 17, that is

Cff(t, t′) ) λδt,t′ (35a)

Cff(t, t′) ) λδ(t - t′) (35b)

λ ) ∑
ips,i′p′s′

e-â(εi+p2/2M+Es)|〈ips|H′(0)|i′p′s′〉|2|p -

p′|2/∑
ips

e-â(εi+p2/2M+Es) (36)

ς(t - t′) ) M

〈pcm
2〉cm

Cff(t, t′) (37)

d
dt

pcm(t) ) -〈pcm
2〉cm

-1 ∫0

t
dt′ Cff(t, t′)pcm(t′) + 〈fL(t)〉wp (38)

∫0

t
dt′ ς(t - t′)pcm(t′) ) ηpcm(t) (39)

η ) M

2〈pcm
2〉cm

∫-∞

∞
dτ Cff(τ, 0) (40)

d
dt

pcm(t) ) - η
M

pcm(t) + 〈fL(t)〉wp (41)

λ ) 6η
â

(42)

d
dt

pcm(t) ) -M-1 ∫0

t
dt′ ς(t - t′)pcm(t′) + eiH0t fL(t) e-iH0t +

i[H0, pcm(t)] (29)

ς(t, t′) )

2M ∑
ips,i′p′s′

e-â(εi+p2/2M+Es) e-i[(εi-εi′)+(p2-p′2)/2M+(Es-Es′)](t-t′) ×

|〈ips|H′(0)|i′p′s′〉 |2 p‚(p - p′)/∑
ips

e-â(εi+p2/2M+Es)p2 (30)

d
dt

pcm(t) z -M-1∫0

t
dt′ ς(t - t′)pcm(t′) (31)

d
dt

pcm(t) ) -M-1∫0

t
dt′ ς(t - t′)pcm(t′) + 〈fL(t)〉wp (32)

Cff(t, t′) ≡ -〈[pcm, H′(-t)]‚[pcm, H′(-t′)]〉int,cm,med (33)

Cff(t, t′) )

∑
ips,i′p′s′

e-â(εi+p2/2M+Es) e-i[(εi-εi′)+(p2-p′2)/2M+(Es-Es′)](t-t′) ×

| 〈ips|H′(0)|i′p′s′〉|2|p - p′|2/∑
ips

e-â(εi+p2/2M+Es) (34)
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After a few steps of calculation, one finds

Terms of odd orders vanish after taking the trace. This permits
the autocorrelation function to be exactly expressed as

whereK2n in the exponent stands for the cumulant at the 2nth
order. The argumentK2 is explicitly written as the term
containing the integral overς(t′ - t′′) in the exponent. It is easy
to establish the general relationship

The higher-order cumulants would be very small, especially as
t increases. In fact, even the functionς(t′- t′′) is negligibly
small except whent′f t′′. This implies that the Kubo cumulant
expansion9 can be safely truncated at second order so as to
obtain the macroscopic limit. The higher-order cumulants, of
course, represent additional quantum corrections that would be
revealed only when the strength of fluctuations is strong enough.

By using eqs 37 and 40, the momentum autocorrelation
function reduces to

when the higher-order cummlants are neglected. The zero-
frequency, macroscopic diffusion coefficient is given by

One immediately obtains the second Einstein relationD ) 1/âη
) µ/â whereµ equalsη-1 and is called the mobility.

5. To Fokker-Planck Equation
The probability that the solute molecule has momentump at

time t if its momentum wasp0 at zero time can be written as

whereP̂p′′ is the projection operator|p′′〉 〈p′′|. This is essen-
tially the projection operator correlation function〈∑p′′P̂p′′(t)
∑p′P̂p′(0)〉int,med,p0 with the averaging over the center-of-mass
coordinates carried out over the states of a specific momentum
eigenvaluep0 with equal weightings. See eq 49 where the second
projection operator is inherently present, but not manifest. This
type of probability has been used in our earlier work on the
propagation of an exciton in a bath of phonons.4,5 Here, however,

it refers to the evolution of the momentum states of the solute
molecule. Equation 49 gives a graphic description of the
probability of the evolution of states with momentump from
states with momentump0 in time t. Also, as discussed in section
2, the operatorP̂p′′(t) can be replaced byP̂p′′(t) in eq 49.
Although the equation is written using sums over states, the
momentum states are in reality continuous and the sums are to
be read as integrals. It is trivial to show

and by using the resolution of the unit operator

These two relations complete the quantum mechanical descrip-
tion of the probability functionP(p, t|p0, 0).

Following the developments in section 3, one can write

while the deviations vanish after taking the trace. Similarly, one
gets

The time-derivative ofP(p, t|p0, 0) can be simply stated as

asτ f 0. To calculate the rate of change ofP(p, t|p0, 0), one
can make use of the identity

This identity can be immediately written down in the classical
case because of the definition of the probabilityP and the
continuous nature of the variablep. The proof of this identity
in the quantum mechanical case while using the definition (eq
49) for P is given in Appendix I. When eqs 53 and 54 are
combined together, one obtains the expansion

where the moments are given by

Cpp(t, 0) ≡ 〈pcm(t)‚pcm(0)〉int,cm,med

) Fr[F̂medF̂cmF̂int pjcm(t)‚pcm(0)] (43)

Cpp(t, 0) ) Fr[F̂medF̂cmF̂int{pcm- ∫0

t
dt′ ∫0

t′
dt′′ {H′(-t′)H′

(-t′′)pcm - 2H′(-t′)pcmH′(-t′′) + pcmH′(-t′)H′(-t′′) +
...}‚pcm] (44)

Cpp(t, 0) ) 〈pcm
2〉cm e-1/M∫

0

t
dt′∫

0

t′
dt′′ú(t′-t′′)+∑

n)2

∞

K2n (45)

K2n ) 〈i2n∫0

t
dt1 ...∫0

t
dt2n T[H′(-t1), ...,

[H′(-t2n), pcm]...]‚pcm〉int,cm,med/〈pcm
2〉cm -

∑
q)1

(n/q)integer)

n 1

(n/q)!
(K2q)

n/q (46)

Cpp(t, 0) ) 〈pcm
2〉cm e-λt/2〈pcm

2 〉cm (47)

D ) 1

3M2 ∫0

∞
dt Cpp(t, 0) (48)

P(p, t|p0, 0))Np0

-1 ∑
p′

(p′)p0)

∑
p′′

(p′′)p)

Fr[F̂intF̂med 〈p′|P̂p′′(t)|p′〉] (49)

∫0

∞
dp p2(pP(p, t|p0, 0)) ≡ ∑

p
∑
p′′

(p′′)p)

|p′′P(p, t|p0, 0)|

) [pcm(t)]pcm(0))p0
(50)

∫0

∞
dp p2P(p, t|p0, 0) ) 1 (51)

pcm(t) ) δ[pcm(t) - p′] - ∫0

t
dt′ ∫0

t′
dt′′Fr[F̂intF̂med 〈p′|{H′

(-t′)H′(-t′′)pjcm(t′′) - 2H′(-t′)pjcm(t′′)H′(-t′′) + pjcm(t′′)H′
(-t′)H′(-t′′)}|p′〉 (52)

P(p, t|p0, 0) ) Np0

-1 ∑
p′

(p′)p0)

[δp,p0
- ∑

p′′
(p′′)p)

∫0

t
dt′ ∫0

t′
dt′′Fr

[F̂intF̂med〈p′|H′(-t′)H′(-t′′)Php′′(t′′) - 2H′(-t′)Php′′(t′′)H′(-
t′′) + Php′′(t′′)H′(-t′)H′(-t′′)}|p′〉] (53)

∂P(p, t|p0, 0)

∂t
τ ) P(p, t + τ|p0, 0) - P(p, t|p0, 0) (54)

∫ dêx∫-∞

∞
dêy ∫ dêz P(p, t + τ||p - ê|, t) P(|p -

ê|, t|p0, 0) ) P(p, t + τ|p0, 0) (55)

∂P(p, t|p0, 0)

∂t
) ∑

n)1

∞ (-1)n

n!

∂
n

∂pn
[MnP(p, t|p0, 0)] (56)

Mn ) lim
τf0

1
τ ∫ dêx∫-∞

∞
dêy ∫ dêx ên P(|p + ê|, τ|p, 0)

≡ [ ∂

∂τ
〈[p(τ) - p]n〉]τ ) 0

(57)
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for n ) 1, 2, ... Equation 56 is the generalized Fokker-Planck
equation.

The macroscopic Langevin eq 41 showsM1 ) -ηp/M. One
can also show10

so that by using the fluctuation-dissipation theorem (eq 40) it
is possible to writeM2 ) 2η〈pcm

2〉cm/M. When eq 56 is truncated
at the second order, one finds the so-called Fokker-Planck
equation

since the thermal average〈pcm
2〉cm equals 3M/â.

6. Conclusions
From the identities in section 2 and the Hamiltonian that is

slightly modified from that in ref 1, it is possible to write down
a quantum Langevin equation that can be easily reduced to its
classical form by taking expectation values over a sharply
localized wave packet. The stochastic Langevin force autocor-
relation function can be obtained with relative ease. This
function is seen to play a vital role in both quantum mechanical
and macroscopic versions of the Langevin equation. Relation-
ships among different quantities can be easily established,
leading to the derivation of the fluctuation-dissipation theorem
and the so-called Einstein relation. The formulation in ref 1
can be directly used to derive an exact expression for the
momentum autocorrelation function. This function can be used
to calculate the macroscopic diffusion coefficient, and the second
Einstein relation can be easily established. Furthermore, the
macroscopic transport characteristics can be explicitly computed
from a few statistical mechanical expressions based on a
microscopic treatment. A quantum mechanical definition can
be easily given to the probability of evolution from the states
of one momentum value to those of another momentum. The
time dependence of this probability can be shown to follow the
so-called Fokker-Planck equation.

The main import of this paper is that the derivations presented
here are mostly quantum mechanical ones. For example, the
classical limit may not hold for a quantum particle, but the
quantum Langevin equation would still give a good description
of its dynamics. The probabilityP(p, t|p0, 0) is quantum
mechanically defined. The identity (eq 55) is proven in the
quantum case.

In the same spirit, one can derive the damped Langevin
equation for the molecule-medium system placed in an external
field, the Smoluchowski relation, and the Boltzmann equation.
This task is left for the future. The derivation of the Boltzmann
equation would involve an explicit consideration of collisions,
and it would be a stimulating exercise. The Boltzman population
function was originally given a quantum mechanical definition
by Wigner. From the work of Schwinger and Dyson, one knows
that a treatment in interaction picture would be suitable to deal
with the scattering phenomena. In fact, Baym and Kadanoff11

have used a generalization of the Born collision approximation
for the thermodynamical green’s function to derive the Boltz-
mann equation. This is also discussed in detail in their famous
book on quantum statistical mechanics.12 What one needs to

do is devise a suitable correlation function that can represent
the population in phase space and keep a proper accounting of
the collisions.

The derivations presented here (and the possibility of deriving
other fundamental relations of irreversible statistical mechanics)
clearly show that the formulation presented by Simons in ref 1
is robust for carrying out an explicit treatment of the transport
properties of a molecule dissolved in a condensed phase.
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Appendix I. Proof of Identity 55
Using eq 53, one finds

where the following abbreviation is used

The quantity Np0 is the number of states of momentump0.
The third term on the right-hand side of eq A.1 can be equated

to zero, as it basically constitutes an integration of the average
of a product of two uncorrelated operators. Asτ f 0, ∫t

t+τ

dt′H′(-t′) f τH′(-t). But the integral∫0
t dt′′[H′(-t′′), P̂p′′(t′′)]

contains, in each term of the detailed sum, a factor like (e-iθt

- 1)/θ whereθ is the energy difference between the initial state
and each intermediate state. Because of the plethora of states
involved in the Fourier sum and the averaging process, the third
term of eq A.1 becomes zero. The first factor in the integrand
of the fourth term tends to zero, that is

asτ f 0, t1f t, andt2 f t. Dropping these two terms from the
right-hand side of eq A.1 yields the required identity.
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