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A quantum mechanical form of the Langevin equation is derived from an explicit consideration of the
molecule-medium interaction, as advocated by Simons in 1978, and by using two identities in the interaction
picture. This can be easily reduced to the classical regime, and further simplified to the macroscopic Langevin
equation by considering the stochastic Langevin force autocorrelation function. One of the so-called Einstein
relations appears as a byproduct. By following the methodology proposed by Simons, an exact expression for
the momentum autocorrelation function is obtained. The latter can be used to calculate the zero-frequency
macroscopic diffusion coefficient that is observed to satisfy the second Einstein relation. The formalism
described above gives rise to the possibility of explicitly computing the transport characteristics such as
friction constant and diffusion coefficient from the corresponding quantum statistical mechanical expressions.
A discussion on the Langevin equation becomes complete only when the corresponding—fRi&kek
equation is obtained. Therefore, the probability of the evolution of states with a particular absolute magnitude
of linear momentum from those of another momentum eigenvalue is quantum mechanically defined. This
probability appears as a special average value of a projection operator and as a special projection operator
correlation function. A classical identity is introduced that is shown to be valid also for the quantum
mechanically defined probability function. By using this identity, the so-called FeKREmck equation for

the evolution probability is easily established.

1. Introduction Moreover, the derivations are mostly quantum statistical in
nature, although the transition to the classical limit is discussed

Approximately three decades ago, in 1976, Jack Simons pre- L . I
pared a theoretical formalism for the treatment of molecules in yvhenever itis appropriate. So, a quantum statistical background

the condensed phase. The medium was considered to be in ther> offered for the well-known classical and phenomenological
mal equilibrium! The theory is not appropriate for fluorescence, relations.
as the intense radiation would heat the neighborhood of the emit-
ting molecule and disturb the thermal equilibrium in short-range.
The formalism was rightfully applied to the study of absorption ~ Hamiltonian. The underlying assumption here is that, when
spectroscopy at low radiation densitgnd also to the investiga-  the medium is in thermal equilibrium, the time-averaged electric
tion of a few transport propertiésin fact, the formulation is field created by the medium at the center of the solute molecule
ideal for the investigation of transport in a thermally equilibrated is centrally symmetric (but not necessarily zero), and there is
medium. Our group has investigated the transport of excitation no net magnetic field. Under these conditions, the center-of-
energy in a molecular aggregate by using the same formdlism. mass motion of the solute can be separated from its internal
Very recently, we have been able to calculate exciton trapping movements (electronic, vibrational, and rotational motions), even
rates in a thylakoid membrane, and the calculated rates areif the solute is a charged speci€$he separation of the center-
highly representative of the known rates of plant grofvth. of-mass motion is normally assumed in statistical mechanical
This work endeavors to show that the formalism proposed tréeatments on an ad-hoc basis, and the above reasoning serves

by Simons leads to a lucid statistical mechanical interpretation t0 clarify the physical and quantum mechanical situation.
of transport. In particular, | would present a derivation of the Therefore, the solute Hamiltonian is written as

2. Theoretical Background

quantum mechanical form of the Langevin equation, a subse- heo({r}) = hr'}) + herlf o)

quent reduction to its classical counterpart, and the quantum

mechanical derivation of the FokkePlanck equation. Most of h. =op._22M 1
em = Pem @)

the relations are well-known to generations of statistical
physicists® What is new in this work is to establish that these In the above{r} represents the coordinates of the constituents
fundamental relationships are derivable from the theory in ref of the solute{r'} represents the internal coordinates, is the
1 that is exact as long as the medium is in thermal equilibrium, coordinate of the center of mags, is the corresponding linear
and therefore, a perturbation expansion in terms of the fluctua- momentum operator, ard is the total mass of the solute. The
tions of the medium’s phase space coordinates from their translational operaton., constitutes a slight difference from
equilibrium values is convergent and, in principle, complete. the choice of the molecular Hamiltonian in ref 1, but it is vitally
important for an investigation of transport properties. In fact,
T Part of the special issue “Jack Simons Festschrift’. McHale and Simorisincluded the kinetic energy term in their
* E-mail: sndatta@chem.iitb.ac.in. treatment of diffusion of a solvated electron.
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The medium Hamiltonian is represented as a sum of total processes where the numbers are always conserved, the chemical

kinetic energy and total interaction energy
hped{R}) = T({P}) + U{R}) 2

where (R}, {P}) stands for the phase space coordinates of all
molecules of the medium. The solutmedium interaction is
given by

u({r'}y, rem {R}) =
Up + uy({r'} rem) + OV} rem {R}) (3)

and it obviously contains information on the internal modes of
the solute. The termyg is negative and generally large, and it

represents the ground-state stabilization energy of the solute in

medium. The interaction; accounts for the variation of the

potential energy as the solute molecule moves from the location

of one cavity to the next, and also for the change of the
stabilization energy upon excitation of the molecule. Isotropy
of space such as that existing in a liquid medium requise®
be centrally symmetric and a periodic functionrgf,. Another

way of visualizing the same is that, as the solvated species

moves along any arbitrary direction, in thermal equilibrium of

the medium it achieves an equivalent configuration (that may

differ only by molecular rotation) for its associated solvent
sheath at almost regular intervals. The teb accounts for
the rest of the molecutemedium interaction, including any
nonperiodic part. It varies completely arbitrarily. Bathand
oV can be visualized as arising from the fluctuation of the

medium coordinates from their equilibrium values. The observa-

tion thatu; can be chosen as a periodic function rgf, is
especially valid for an infinite system that has no end effect.
For instance, the KronigPenney model potential may be
considered for the migration of a solvated electton.

The total molecule medium Hamiltonian

H = hg + hpeqt U (4)
can be partitioned as
H=H+H (5)
where
H® = hy, + e+ Nieg+ Ug (6)
and
H =u, + oV 7)

The perturbationd’ is small in thermal equilibrium at a relatively
low temperature.

Distribution Functions. In a guantum-mechanical treatment,
one uses the distribution operators in lieu of distribution

potential dependence can be removed from the distribution
operators. In other words, one may use the canonical distribution
operators. Statistical mechanical averages would be written as
XO= F7{pX}. One observes

Up + Uy({r'} Tom) = TH{Dmedd{ '}, T {RD}

so thatldViheq = 0.
Identities. The formulation in ref 1 is based on two basic
identities in an interaction picture. The first one is

©)

t
et — e;'j; H(—r)dre—iHOt (10)

whereH'(t") has Heisenberg time dependence with the zeroth-
order Hamiltonian

Hl(t!) — eiHOt'Hy(O) e—iHot’ (11)
and T indicates time ordering. The time evolution of any
operator Ois given by
t t
Oty = ™ e'Tfo T H0) € JoHene g 40y
The second identity is
t t t
e;ﬁ H (—7)de 30) e;'ﬂ H(-)dr _ {euTJ; [H'(—7).Jde B0} -

These two identities give rise to a general expression for the
correlation functions, namely

Caslt, 0) = AWMBO)I= A{p " Aty e M BO)}  (14)

where

AW = 1S ao) 15)

Correlation Functions. A few properties of the correlation
functions are reviewed here. One may write

Caglt, 0) = 77{ p(0) Cpft, O)}
= FH{(—1)Cag(0, —)}

where Cag(t, t') = A()B(t'). The equality above exhibits the
so-called HeisenbergSchralinger duality, (rather, unity). The
distributionp obeys the quantum mechanical Liouville equation.

If B commutes withH®, then the correlation function has a
very simple form

Cag(t, 0) = FH{B(O)At)B(O)}

(16)

17)

functions. The three classes of motion considered here have thel-hiS is due to the property of a trace. FurthermoreB ifs a

following grand canonical distribution operators:
Z)int = g PlhintsoNsod f 72 { e_ﬁ(h\m_ﬂsoleol)}
Pom = g Phemy 7 { e*ﬁhcm}
— e*ﬁ(hmecr.umecNmeJ | 7 e*ﬁ(hmeer/tmecNmecD}

®)

Here, usol and umeq are the chemical potentials of the solute
and solvent molecules, respectively, aig; andNyeq are the

Prmed

constant, then the correlation function reduces to the same
constant multiple of the thermally averaged valueAdt)

AWM= F{(0)AD}

= A{p(—)A0)} (18)

The average valuBA(t)Oneed not necessarily be independent
of time in a dynamical situation, as would be shown in the
example (iv) below and elaborated in section 5. It may also
represent a steady state of motion, as discussed by us earlier in

corresponding numbers. Considering that this work deals with the context of the migration of excitation energy in a molecular
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aggregaté. Therefore, it may be called a correlation function The third-order term can be written as

of the second kind. It is also possible to generalize the correlation

function of the second kind by calculating the expectation value f dt'{ H'(—t)H'(—t")i f dt"[H'(—t"), pend — 2H'(—
over one type of motion (say, the excitonic mode) and the

thermal average over the other types (say, the phonon modes)t)i f at"[H'(—t"), peH'(—1) + i f dt"[H'(—t"), pemlH'
In the present context, this would be illustrated in example (iv)

by an expectation value over the center-of-mass motion, while (—)H'(=t') + 2H'(-t)i j;) dt”"([H'(—t"), P H' (=) — [H'
the thermal averaging is done over the internal movement of , v e I , ,
the solute molecule and the movement of the molecules in the () PemlH'(=17)) — 'j; dt” ([H'(=t"), pen] H'(—0H
medium. The last step in eq 18 again reveals the Heiserberg (—t) — [H'(=1), penH'(=t)H'(=t"))} (25)
Schralinger synthesis.

This work involves the treatment of four quantities, one The last two integrals represent the difference at the third order.
operator and its expectation value, two correlation functions, The fourth-order term can be similarly reduced, and so on.
and an operator and the corresponding correlation function of Therefore, it is possible to write
the second kind. These are explicitly as follows: (i) the linear
momentum of the center of the mapsx(t), and its expectation _ s AHO S L R (4 DL\
value over momentum states; (ii) the stochastic Langevm force dtpcm() L/; dt €7 {H (ZOH (Z0Pen(t) = 2H (= 0P

autocorrelation functiorifi (t)-fL(0)Ght.cmmed (A=B =1, p = (tYH (—t) + P (t)H (—)H (—t') + O@3)} e HY 4 gH ¢
PintPemPmed); (iii) the momentum autocorrelation functiofcn- em e o -
(t)*Pem(0)Ght,cm,med (A = B = Pem; p = PintPemPmed; and (iv) a Me +i[H, pcm(t)] (26)
projection operator and the projection correlation function of
the second kind. This is the quantum mechanical version of the Langevin
The exact stochastic force would be defined by equation.
It is obvious that the integranidinvolved in eq 26 is of the
fsiochasif0) = — Ve H'(0) = —i[p., H'(0)] form O4(t — t') pem(t’) O2(t — t'). At this point, one makes the
assumption that, far— t' greater than a relaxation tintg, the
ftochasil) = —1[Pem(®), H' ()] (29) terms of the integrand other than the momentogn(t') may
be replaced by an average value. By using eq 21, the integrand
while the stochastic Langevin force is written as in eq 26 is written as

fL®) = = VerH'(=8) = =ilPem H'(=0] = foiocnasi—t) (20) 1t t') = " H' (—t)H (=) e ", () €™ — 2H
3. To Langevin Equation (—) € M pet) €7 HI(—t) + &M p(t) €Y H(—)H

In this section, use is made of the two identities and the (—t) + 0@} e ™ (27a)
Hamiltonian in eq 5. This Hamiltonian is a slightly modified
version of the Hamiltonian in ref 1.

Quantum Langevin Equation. The Langevin equation
appears in two parts. The first part is trivial to establish,as
= i[H, rem] = pe/M. The second part deals with the time
dependence gbcm(t). Using egs 12 and 15, one can write

To get an average, one takes qut(t'), and the remaining
expression is weighted by the kinetic energy in such a way that
onepem Stays in the place gicm(t') and the othepcm remains
after the expression, and the overall expression is normalized.
The thermal average of the deviations at the third and higher
orders becomes zero. This gives, becgugecommutes with

Per(t) = gHYt Ber() o HY 1) H° and the intermediate propagators ex{°t') cancel each

other
where I(t, t') =
AHOt I I 1) I T I I
pcm(t) — pcm + |‘/;[H'(_t'), pcm] dt + iz‘/(’; dtr‘[(')t dt T[Hr Eel {H (_t)H (_t )pcm —2H (_t)pcmH (_t) + pcmH

P P o aiHOt "
(—t), [H'(—t"), pan] + i’o’fot dt,j(‘)t dt”f; dt" T[H'(—t), ( t)H ( t)} Pem € |:pcm(t )/@ PemPem € D(27b)

[H'(—=t"), [H'(—=t""), perall] + ... (22) It will be shown later that this substitution is in agreement with
the stochastic force correlation function. Thus, the integrand
One now considers the time derivative I(t, t') is to be replaced as

S Penl® = [H, P0] + € By €™ (23) (€)= M5l = Open(®) 27e)

where the average valugt — t') is written as

Lo (t = t) = Mo, 0% x [H (—OH'(—t)Pepy — 2H'
pcm(t) N (_t)pcmH'(_tl) + pcmH'(_t)H’(_t')} 'pcml%t,cm,med (28)

t
fLt) — [ dt'{H'(=t)H'(—t)p.y, — 2H'(—t)p.H'(—t') +
- ‘/(1) . cmt o The propagators exgiH%) vanish after taking the trace. The
P H (—OH'(—t)} — ijg) dt' j(') dt'" {H'(=t)H'(—t")H substitution by an average value is, of course, an approximation,
i AL\t g v ) but it is justified on the following ground. As the solute molecule
( t, MPern . 3H'( 0':' ( t)'pcmljl( t )”+ SH (= O)perH pushes through the molecules of the medium, the latter exert a
(—tOH(=t") = pepH' (=OH'(=t)H(—=t")} + ... (24) dragging force. One part of the rate of change of this force with

where
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time varies linearly with momentum, and the proportionality Ci(t, t') = A0y, (35a)
constant becomes equilibrium-averaged in the span of a very

short timete. With this maneuver, the quantum Langevin When one considers the sum over discrete states in eq 34 and
equation reduces to with similar manipulations

Cy(t, 1) = A0(t — 1) (35b)

d - t I 1 I i —i

gt Pen®=—M" [l (t = O)per(®) + MM O € +
0 when eq 34 involves continuum states. The quatritiiy given
iH, pon(®] (29) by

When the quantity(t, t') is explicitly calculated, one finds 1= Z efﬁ(€‘+p2’2M+ES)|[ﬂps|H'(0)|i'p’s’ [UZID _

g(t t') _ ipsip's
! 1 —/3 € /
mﬂzeﬁwmwwgmwm&ﬁm%ﬁmwu pwzeﬂwmﬂ”%)
ipsip's v
OV T2 mef — —B(e+pA2M+Eg 2 and can be evaluated if one assumes a specific form ahd
|OpsiH'(O)fi'p's 0 p:(p — ')/ ) e pEo) g

Ps : : . .
I It is obvious that the classical assumptions about the average

where i is an internal statep represents the momentum and the autocorrelation of stochastic fofc@se accurately

eigenvalue, and is an eigenstate dineq derivable in the quantum mechanical treatment.

Reduction to the Classical RegimeWhen an averaging is Simplifications. The first question that arises at this point is
carried out over a momentum eigenstate, one gets an integratedvhetherg(t — t') is related toCx(t, t'), as these are very similar
version of the classical Langevin equation guantities. In fact, one finds from eqs 30 and 34 that they differ

only in the factors B+(p — p') and|p — p’|? within each sum
%pcm(t) = _Mflfo‘ dt' c(t — t)pgy(t) (31) in the numerator. It is easy to realize that the predominant

contribution to each expression arises from phe p' terms.
Thus, the sums gf? in the numerator equal the sums t.

The plane-wave expectation value of the stochastic Langevin This establishes the quantity

force more or less vanishes, as one part of the force periodically

varies with rem and the other part changes arbitrarily with Nn_ M ,

position. However, if an averaging is done over a time- st—1) = 2 Cy(t, 1) 37)

independent wave packet that is localized in space and serves cm "em

as an approximate eigenstatettf, one gets the approximate, | a classical or semiclassical treatment, such an equality can

but more familiar, form be found by certain approximate considerations of the conserva-
d . tion of energy as discussed in ref 10. In view of eq 37, the

o Pen(t) = M1 ﬂj dt’ 5t — t)pen(t) + B(OH, (32) Langevin eq 32 can be recast as

The classical limit applies when the spreading of the wave %pcm(t) = —mcmﬁﬁ f(; dt’ Cq(t, t)pn(t) + H (DL, (38)
packet can be neglected over times of interest in the particular
problem. Thus, it applies to solute molecules (cation, anion, or ~ BecauseCx(t, t') is sharply peaked at and symmetric around
neutral) at ordinary temperatures, but not to the migration of a t — t' = 0, one can easily replace the integral in eq 32 as shown
solvated electron. A solvated electron can migrate in various in the following:
ways, namely, from cavity to cavity, from one solvent molecule
to another, and through the migration of the solvent molecule ft at’ g(t — t)Pem(t’) = 7Per(t) (39)
with which it is attached. 0

Stochastic Force Correlation. It is easy to note that  The macroscopic friction constaptturns out as
@L(0)Ght.cmmed = O but B (t) Ghicmmed = 0. Furthermore, the
autocorrelation function of the fluctuating force

Cff(ta t') = —[ﬂpcm, H,(_t)]'[pcm, H,(_t')] mn,cm,med (33)

M o
ZE%Tn ., dr Cy(z, 0) (40)

This result is a restatement of the fluctuatiadissipation

77:

is, in general, nonzero. An explicit calculation yields theorem'® Use of eq 39 in eq 32 yields
Cqlt, t) = d —_n
Z @ Bl tPAMTE) grille—e)+HpP-pAIMHEEI(-t) o dtpcm(t) B Mpcm(t) 0Ok (41)
ipsIp's , which is the macroscopic Langevin equation. Similarly, by using
| [ps|H'(0)[i'p'S TFIp — p’|2/Z g PEtPi2MIEd (34) eq 35b and the fact thape2dm = 3M/j, one finds
" . 2=% (42)
In eq 30, as well as here, the involved states are practically B

continuous, and most of the sums are to be read as integrals. . . ) . .
The conversion of summation to integration is a standard which is the so-called Einstein relation.
technique, and would not be pursued here. What is important
here is that, because of the extensively oscillating factors, the
correlation function becomes sharply peaket-at’ = 0. With Momentum Autocorrelation. The momentum autocorrela-
only minor manipulations, it is possible to write tion function can be directly written down from eq 17, that is

4. Diffusion Coefficient
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Coplts 0) = IDer(1)*Pom(0)Ght.cm,med it refers to the evolution of the momentum states of the solute
o molecule. Equation 49 gives a graphic description of the
= T PmecmPint Pem(t) Pem(0)]  (43) probability of the evolution of states with momentymfrom
states with momentumy in timet. Also, as discussed in section

After a few steps of calculation, one finds 2, the operator15p~(t) can be replaced bﬁ’pn(t) in eq 49.
o ; v Although the equation is written using sums over states, the
Coplts 0) = T Brederbind Pam— o At f5 dt" {H'(—t)H' momentum states are in reality continuous and the sums are to
()P — 2H (—t)PerH (—t") + poH (—t)H'(—t") + be read as integrals. It is trivial to show
3 Pend (44) Jy dp PP, tipo, 0) =Y S IP"P(p. tpo, O)
Terms of odd orders vanish after taking the trace. This permits b (p'?:p)

the autocorrelation function to be exactly expressed as
= [pcm(t)] Pem(0)=Pg (50)

t t >
Coplt, 0)= e e_l/ML dtﬁ dree—t H; Kan (45) and by using the resolution of the unit operator

whereKgy, in the exponent stands for the cumulant at th&éh?2 ﬂ:’ dp p?P(p, tlp, 0)=1 (51)
order. The argumenK; is explicitly written as the term
containing the integral ovext' — t") in the exponent. Itis easy  These two relations complete the quantum mechanical descrip-
to establish the general relationship tion of the probability functiorP(p, t|po, 0).

. . Following the developments in section 3, one can write
Kop = 0" (it ... [ dty, TIH'(—1y), ...,

_ ot Yo ara A R
[H'(_th)' pcm]'"]'pcml;lmt,cm,meémcmzlgm _ pcm(t) - 5[pcm(t) p] j(‘) dt j(‘) dt '/T[pintpmedm) |{ H

n 1 (—t)H (")) — 2H'(—t)Pe(t")H (—t") + Pt )H'
> o (K™ (46) (—O)H (=t} P'0(52)
(Wa=integer) v while the deviations vanish after taking the trace. Similarly, one
gets

The higher-order cumulants would be very small, especially as
t increases. In fact, even the functig(t'— t'') is negligibly _ Nl _ U (U
small except wheti— t"'. This implies that the Kubo cumulant P(P. tIpo, 0) Npo ; [69*’0 pz ﬁ) dt fO a7
expansiof can be safely truncated at second order so as to (P'=po) (0"=p)
obtain the macroscopic limit. The higher-order cumulants, of [bimf)me@'lH'(—t’)H'(—t")I5p”(t”) — 2H'(—t’)|5p,,(t”)H'(—
course, represent additional quantum corrections that would be ) + Pt H (—t)H (—t)} ' D (53)
revealed only when the strength of fluctuations is strong enough. p" P

By using eqs 37 and 40, the momentum autocorrelation

function reduces to The time-derivative oP(p, t|po, 0) can be simply stated as

_ 8P(p! t|p01 0)

Coplt 0) = Wy Ly € 2P (47) — 5 7= P(p. t+7lp;, 0)— P(p. tipy, 0) (54)
when the higher-order cummlants are neglected. The zero-a5; — 0. To calculate the rate of change Rfp, t|po, 0), one
frequency, macroscopic diffusion coefficient is given by can make use of the identity

1 0 00
D= 3—M2J; dt Cpe(t, 0) 48)  [dg, [ d& [ dE,P(p,t+llp— &L 1) P(p -

One immediately obtains the second Einstein relaflea 1/67n
= ulp whereu equalsy~! and is called the mobility. This identity can be immediately written down in the classical
5 To Fokker—Planck Equati case because of the definition of the probabilRyand the
- 10 FOoKker N anck Equation continuous nature of the varialyle The proof of this identity
_ The probability that the solute molecule has momenfuet in the quantum mechanical case while using the definition (eq

-1 . . N . combined together, one obtains the expansion
PP P O)=N 5 > AlBindmea PP (DI (49)
PP

P PP, tIpe, 0) = (—1)" o"
e = —[M,P(p, tpy, 0)]  (56)
p

R L nl
where Py is the projection operatgp”Op”|. This is essen- at =

tially the projection operator correlation functidﬁpulf’pn(t)

> pPp(0)Ghmedp, With the averaging over the center-of-mass
coordinates carried out over the states of a specific momentum 1 o

eigenvalugy with equal weightings. See eq 49 where the second Mn = L'L% T f dng—oo dgy f dé,&"P(Ip + &1, 7Ip, 0)
projection operator is inherently present, but not manifest. This
type of probability has been used in our earlier work on the
propagation of an exciton in a bath of phondfigiere, however,

where the moments are given by

0 n
A CORDL I (57)
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forn=1, 2, ... Equation 56 is the generalized FokkBfanck
equation.

The macroscopic Langevin eq 41 shovls = —yp/M. One
can also show

2 p(@) — p0= [, Cyls 0) s (58)

so that by using the fluctuatierdissipation theorem (eq 40) it
is possible to writdVl, = 25[Pcr?ld/M. When eq 56 is truncated
at the second order, one finds the so-called Foklkanck
equation

ap(p! t| pO! 0)

=N

ap(pv t|p01 O) + % 82I:>(p7 tIpO! O)
ap op°

3 (59)

since the thermal averadpcn?ldm equals B4/8.

6. Conclusions

From the identities in section 2 and the Hamiltonian that is
slightly modified from that in ref 1, it is possible to write down
a quantum Langevin equation that can be easily reduced to its
classical form by taking expectation values over a sharply
localized wave packet. The stochastic Langevin force autocor-
relation function can be obtained with relative ease. This
function is seen to play a vital role in both quantum mechanical
and macroscopic versions of the Langevin equation. Relation-
ships among different quantities can be easily established,
leading to the derivation of the fluctuatiewlissipation theorem
and the so-called Einstein relation. The formulation in ref 1
can be directly used to derive an exact expression for the
momentum autocorrelation function. This function can be used
to calculate the macroscopic diffusion coefficient, and the second
Einstein relation can be easily established. Furthermore, the
macroscopic transport characteristics can be explicitly computed
from a few statistical mechanical expressions based on a
microscopic treatment. A quantum mechanical definition can
be easily given to the probability of evolution from the states
of one momentum value to those of another momentum. The
time dependence of this probability can be shown to follow the
so-called FokkerPlanck equation.

The main import of this paper is that the derivations presented

Datta

do is devise a suitable correlation function that can represent
the population in phase space and keep a proper accounting of
the collisions.

The derivations presented here (and the possibility of deriving
other fundamental relations of irreversible statistical mechanics)
clearly show that the formulation presented by Simons in ref 1
is robust for carrying out an explicit treatment of the transport
properties of a molecule dissolved in a condensed phase.
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Appendix I. Proof of Identity 55
Using eq 53, one finds
S dg [ dg, [ dE,P(p,t+ 7llp — £1,1) P(p —

+7 !
El tIpp.0) = Oy — fo ' [ clt” > H(-H
(P"=p)

(—t")Pyu(t") = 2H'(—t)Py(t")H (—1") + Pt )H (—t)H'
I t+T I t rn T I T I D
(—t")Ghemeap, T f; Ot [ it Z [ (—t)H' (—t")P,.

p
B (P'=p)
(t") = 2H'(—t)Py.(t")H'(—t") + Py (t")H (—t)H’
(_t”)mwt,medpo—i_

Sty [ [0 dty [0 > ok g [ d,
p

(P"=p)
[H-I'(_tl)H'(_tZ)er”(tZ) - 2H'(_tl)|5p”(t2)H’(_t2) + |5p”

(tz)H'(_tl)H'(_tz)%,medxpwg\ X Z [H'(—txH’
P
B _ (P'=Ip"—&D)
(—t)Ppu(ty) — 2H' (—ty)Ppu(ty)H' (—t,) + Ppu(t)H (= tx)H’
(_tA)Qu,mede (A.1)

where the following abbreviation is used

wmwt,medpo = Ngol T PintPrmea P'1YIP'T

(P'=po)

(A.2)

The quantity N, is the number of states of momentymm
The third term on the right-hand side of eq A.1 can be equated

here are mostly quantum mechanical ones. For example, thet© Zero, as it basically constitutes an integration of the average

classical limit may not hold for a quantum particle, but the
guantum Langevin equation would still give a good description
of its dynamics. The probabilityP(p, t|po, 0) is quantum
mechanically defined. The identity (eq 55) is proven in the
guantum case.

In the same spirit, one can derive the damped Langevin
equation for the molecutemedium system placed in an external
field, the Smoluchowski relation, and the Boltzmann equation.
This task is left for the future. The derivation of the Boltzmann
equation would involve an explicit consideration of collisions,
and it would be a stimulating exercise. The Boltzman population
function was originally given a quantum mechanical definition
by Wigner. From the work of Schwinger and Dyson, one knows
that a treatment in interaction picture would be suitable to deal
with the scattering phenomena. In fact, Baym and Kadahoff
have used a generalization of the Born collision approximation
for the thermodynamical green’s function to derive the Boltz-
mann equation. This is also discussed in detail in their famous
book on quantum statistical mechantés/Vhat one needs to

of a product of two uncorrelated operators. As— 0, fi“

dt'H'(—t') — tH'(—t). But the integral/}, dt"[H'(—t"), Ispu(t”)]
contains, in each term of the detailed sum, a factor liké’{e

— 1)/6 where@ is the energy difference between the initial state
and each intermediate state. Because of the plethora of states
involved in the Fourier sum and the averaging process, the third
term of eq A.1 becomes zero. The first factor in the integrand
of the fourth term tends to zero, that is

Z JEE B (—t)H (—t)P,(t,) — 2H (—t)P,.(L)H'(—
p
(P"=p)

tz) + Ispu(tz)H'(_tl)H'(_tZ)Qn,medxp”fé\ —0 (A'3)

ast — 0, t;— t, andt, — t. Dropping these two terms from the
right-hand side of eq A.1 yields the required identity.
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